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Cosmological Compactification in Kaluza-Klein 
Model and Time-Dependent Cosmological Term 
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Einstein's equations for the generalized (4 + D)-dimensional Robertson-Walker 
model are solved taking the conformally invariant action for the matter field. 
Compactification of this model is discussed and the compactification time/com- 
pactification mass scale for different values of D is calculated. The resulting 4- 
dimensional action for gravity is obtained. It is found that a time-dependent 
cosmological constant is induced which is very large when the cosmic time is 
small and very small when the cosmic time is large. 

In the context of  the unification of  gravity with fundamental forces of  
elementary particles, Kaluza (1921)-Klein (1926) theory and its generaliza- 
tion to higher dimensions is very attractive. The central problem in these 
theories is how the internal manifold (space with extra dimensions) compac- 
titles to the Planck size. The topology of the space-time is supposed to be 

(time) x M 3 (ordinary 3-dimensional space) and S D (D-dimensional inter- 
nal manifold) with S ~ compact and R x M 3 paracompact. Many authors 
have used this idea, but in most of  the papers (Miller, 1977; Carter, 1977; 
Appelquist et  aL, 1987) the scale factors associated with S o are time-indepen- 
dent. This approach completely ignores the dynamical contribution of  the 
internal manifold. It seems natural to study compactification and other 
manifestations of the internal manifold keeping its dynamical aspect. 

Some authors (Chodos and Detweiler, 1980; Freund, 1982; Dereli and 
Tucker, 1983; Randjbar-Daemi el al., 1984; Abbott  et  al., 1987; Maeda, 
1984; Sahadev, 1984) have obtained cosmological solutions of Einstein's 
equations in which the internal manifold contracts and 3-dimensional space 
expands with time. This note offers a compactification scheme based on the 
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dynamics of  a higher-dimensional model of  the universe. Moreover, atten- 
tion also is paid to the cosmological constant problem. As is well known, 
the energy density due to the cosmological constant is extremely small today, 
even less than 10 -46 GeV 4. But if one believes general relativity at the Planck 
scale, one gets the value as ,~1076 GeV 4. The problem is to understand how 
the value of the energy density due to the cosmological constant has come 
down by more than 122 decimal places today. In this note, through dimen- 
sional reduction of the (4 + D)-dimensional gravity (without cosmological 
constant), an effective 4-dimensional action for gravity with a cosmological 
constant term is obtained. The 4-dimensional cosmological constant thus 
obtained is time-dependent and asymptotically decreases with time. Thus a 
possible solution of the cosmological constant problem is suggested here. 
The natural units h = c = 1 are used, where h and c have their usual meaning. 

We consider a (4 + D)-dimensional space, with coordinates that can be 
separated into the coordinates x ~' of  ordinary space-time plus the coordinates 
yO of the D-dimensional internal manifold. The line element is the generalized 
Robertson-Walker line element for (4 + D) dimensions, which is given as 

ds 2 = - d t  2 + P ( t ) ~  dx  i dxJ + RE(t)g~b(y) dy ~ dy b (1) 

where i , j =  1, 2, 3 and a, b = 4  . . . . .  ( D + 3 ) ;  r(t) and R(t )  are scale factors 
for M 3 and S D, respectively; t is the cosmic time; ~u is the 3 • 3 unit matrix; 
and gab(Y) is the metric tensor on S ~ Since S D is a compact manifold, it 
can be either homeomorphic to a sphere or to a connected sum of  tori or to 
a connected sum of real projective planes (Massey, 1967). For  simplicity 
here, S ~ is taken to be a D-dimensional sphere. Hence 

gab(Y) dY ~ dY b 

=pE(dOE + sinE 01 dOZE+ . �9 �9 +sin E 01 �9 �9 �9 sin E 00-1 dO 2) (2) 

where p is the physical radius of S n and 0j,  0 2 , . . . ,  0n are angular 
coordinates. 

The energy-momentum tensor for a perfect fluid can be written 

TMN = ( e + p)uMuN + ( 6p + 6 'P)gMN (3a) 

where e is the energy density, p is the isotropic pressure on M 3, P is the 
isotropic pressure on S o, and u ~ u ~  = -1 ,  with u ~ = I, 

U I = u E ~ _ . . .  =uD+3~___0 

Also, 8 ' =  1 - 3, where 

6 = ~ 1  for M , N = 0 , 1 , 2 , 3  

to for M, N=4 ,  5 . . . .  , ( D + 3 )  
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Hence, 

T O = e, T~=p (i= 1, 2, 3) 

and 

T',7, = P, m = 4, 5 . . . . .  (D + 3) (3b) 

Conservation of energy-momentum yields 

k+E(3~+D~) +3p~-+DPI~ O r  --=R (3c) 

The matter field considered here is noninteracting as well as conformally 
invariant. So the energy-momentum tensor will be of the same form as (3a) 
and its trace will vanish. For convenience p and P are taken equal, so 

e = (O + 3)p (4a) 

The conservation equation (3c) now yields 

k+(3  ~+ D RR--')(e+p) =0 (4b) 

where the overdot denotes O/Ot. Using (4a), one can integrate (4b), giving 

(D+3)M 
e - -  (r3Rn)(o + 4)/(D + 3) ( 5 )  

where M is an arbitrary integration constant. 
In terms of the dimensionless parameter ? = t / t p  ( t p  is the Planck time), 

Einstein's field equations are 

r" R" 8tr G(D + 3)Mr 2 
3 - - + D  - - =  (6a) r R [r3(?)RD(?)] (D+4)/(D+3) 

r' R"~ 8~rOMt 2 
d ',re r 3r+D-R)=[r'(?)R~'(?)]'~'§176 (6b) 

r' R"~ (D-1)Rnt z _I_ d (R']+R' 37+D-R) 
p2R2 d? kR/  R 

81rOMt~ 
- [r3(7)Rn(?)l(O+4)l(n+3 ) (6c) 



2106 Srivastava 

where the prime denotes d/a? and the (4+D)-dimensional gravitational 
constant is given by 

(~ 2trio+l)/2 o~ 
- ~ p  t,~ (7) 

1�89 1) 

with GN the Newtonian gravitational constant and ~ is the gamma function 
of to. 

Introducing raR~176 ~ with A D+4= 8~rGMt~, one gets one 
more differential equation: 

r' R '_  [a(~ ' 
3 -+Dr R O "(D+3) (8)  

Using (6b) in (8) and integrating, one gets 

(9) 

where k is an integration constant and r is defined as 

f ~ d?~ 
r = a(?,) (lO) 

Differentiating (8) with respect to ? and using (9) and (6a), one gets a 
nonlinear second-order differential equation for or" 

D + 3 d2o " 2(D + 3) .~[dcr'~ 2 D + 3 3(k + %') 2 

o- dr 2 o -2 ~-zJ + ~  --b-~-~ o -2(D+2, 

DL cr dr trD+ 2 j -  (11) 

The equation admits the solution 

a D+2-D+2  (k+ r) 2 
2 

(12) 

with the boundary condition tr = 0 at z-=-k.  
Using (10) in (12) and integrating gives 

I/(o+2) + 
. D + 2  D 2 

(13) 
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with the condition that ~'= 0 when r = - k .  Equation (9) yields the solution 

F[ 2 ~11(0+2)[D+4~ ]2/(0+4) 
(14) 

Multiplying (6c) by D and subtracting it from (6a), we find that 

[R~'r R' r" 2D+3 
DkR} - (D+3) __~ - - + 3 - - +  o.n+---- T (7 R r 

D(D- 1)kor6/nt2 = 0 (I 5) 
A D + 3p2 0.2(0 + 3)/D 

Using (12)-(14) in (15) yields 

(R~R) 2 (D+3)(D+2)R' 4(D+2)-4 f12 
D(D+4)t" R (D+4)2(t) 2 (t) 4/(D+4)=0 (16) 

where 

~2_D(D-1)RD,2( R3o ~2/D(D--F2~4/(D+4) 
p2 \A ~ \ 0 + 4 )  

2 12(-D2-gD+I2)/D(D+2)(D+4) 
• (17) 

From (16) one gets 

R'_ 1 ((D+ 3)(/)+ 2) 
R 2 \  D(D+4)t" 

4_ I t (D+  3)(D+2)12 16(D+2) 4fl 2 .~,/2.~ (18) 
tL ~ J (D+4)2(~.)2 ~ (~.)4/(0+4)} ] 

If R(t) acquires maxima at i'=i'.,, then from (18) 

(D+3)(D+2)  
D(D+4)t'm 

+ I [ (D+ 3)(D+2)]2 16(D+2) 4132 .~1/2 
tL ~-/~+--~ J (D+4)2(~.m) 2 t (lm)4/(n+4)j =0 

If the condition of maxima is used in (16), then 

f12 4(D+2) 
(~'m) 4/(/:)+ 4) (D +4)2(?m) 2 

(19) 

(20) 
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Looking at (19) and (20), one should take only the negative square root in 
(18), for the sake of  consistency. Moreover, from (17) and (20), one gets 

A2(~ + 3)/D_ D(D - 1)kot2(D + 4)2(t',n)(20 + 4)/(0 + 4) 
4p2(D + 2)0/(0 + 4)(0  + 4)4/(0 + 4) 

[ - \2(--02--80+12)/0(0+2)(0+4) 

This result shows that for D = 1, A = 0, which leads to an inconsistency, as 
it yields r---0, R = 0, or M =  0. This means that the results are not true for 
D = 1. So, we will not consider the D = 1 case henceforth. 

When ~'< 1, (18) can be approximated as 

R, I- ,_ 
-R-"- 2D(D+4)~" L2D(-D-+-4) k D + 2  : J ~" 

which yields the solution 

R(t) = Ro( ' t )  [(D+2)/20(D+4)]( (0+3)-[(03-802+210+ 18)/(D+2)]1/2} (22) 

where/~0 is an integration constant. 
When i '> 1, (18) is approximated as 

R' ( D + 3 ) ( D + 2 )  fl (23) 
R 2D(D + 4)t" (.i)2/to+ 4) 

which is integrated to 

e x p [ - f l  ~-~O+4 . 0+2 o+4-1 R(t) = Ro(~)(D+ 3)(D+ 2)/2D(D+4) (t) ~ )/~ )] (24) 

where R0 is an integration constant. 
From (14), (22), and (24), one learns that R(t) starts from R(0)=  0 like 

r(t) and both expand until t '< 1 ( t<  tp). But when t '> l  ( t>  te), R(t) turns 
over and starts to collapse, while r(t) still expands. Thus it is reasonable to 
infer that R(t) has a maximum around 7 -  ~ 1, i.e., /'m -~ 1. NOW, from (20) 

f l 2 _ 4 ( 0 + 2 )  
(D + 4) 2 (25) 

At this juncture, one may ask, "Why does R(t) start to collapse after 
an initial expansion?" One can answer this question by looking at (21) and 
(23). When i '< 1 (t < tp), there is no term on the rhs of  (21) which can make 
R(t) decrease. But when t" > 1 (t > t~,) on the rhs of (23), there exists a term 
_fl/(?)2/w+4) which is responsible for collapse, as is transparent from the 
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solution (24). Also one can see that collapse is not possible if fl vanishes. 
From (20), one finds that the possibility of  fl vanishing exists only when 
D = oo. But D = oo is not feasible. Realistic higher-dimensional theories are 
described in finite-dimensional spaces. For example, a realistic model of  N =  
1 supergravity theory exists in 11 dimensions, bosonic strings are described 
in 26 dimensions, and fermionic strings as well as superstrings are possible 
in 10 dimensions. Moreover, compactification of  the model considered is not 
possible if R(t) does not turn over. 

One can also notice that when 7> 1, the solution (24) shows that R(t) 
does not stabilize itself at an early epoch. It stabilizes at R = 0 when t = 0% 
though (as discussed later) pR(t)~ Lp (Planck length) when t >  tc (compact- 
ification time). Thus R(t) has a "crack of  doom" singularity when t ~ oo. 

Thus we find that compactification of  the model is possible when ? > 1 
( t>tp) .  The effective radius for S n is pR(t). When i >  1, it is given by (24) 
and (25) as 

pR(t) = pRof(t) (26) 

where 

[ 2  ] f(t)  =(?)(n+3)(n+2)/2o(n+4) exp ( D + 2 )  1/2 (?)(0+2)/w+4) (27) 

p and Ro are both arbitrary, so it is assumed that 

pRo=Le (Planck length) (28) 

Under this assumption, which does not harm the physics, the effective 
radius is equal to Lef(t). Thus the effective radius of  the compact manifold 
S ~ increases or decreases as f ( t ) .  Our observable universe is 4-dimensional. 
This means that the extra D-dimensional space is hidden, being extremely 
small (undetectable) in size, around Le, the Planck length (Toms, 1986). So 
it is expected that the effective radius of  S ~ should not be greater than Le 
at the time when we get an approximately 4-dimensional model of  the uni- 
verse (Kolb and Slansky, 1984). This particular time is called the compact- 
ification time to. Based on this idea, it is inferred that 

f(t~<~l (29) 

Connecting (27) and (29) yields 

2 ('ic)(n+2)/(~ 1 (?c)(n+3)(n+2)/2n(o+4) exp [ (D + 2) j/2 (30) 
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On taking the logarithm of  both sides of (30), we find 

D + 3  l-~r xfv+2)/tD+4) / 2 ([~)tD+2)/tv+4) 
2D "" ~' c~ ~ (D + 2) i/2 

which yields, on expanding the logarithm and neglecting higher-order terms 
of  the left-hand side, 

- 4D/(D + 3) (D + 2)'/ij 
(31) 

Using (31), one can compute t'c for different values of D. The compact- 
ification mass scale Mc can also be calculated by inverting ~'~ and multiplying 
it by Me (Hanck mass). This formula is not valid for D = 1, as it is noted 
above that compactification of  the internal manifold is not possible for D = 
1 in this model. In the Table I, t~=t~/te and ~ r =  (~.)-i =MJMp are given 
for different values of D. It is noted that ~ / ~ r  increases (decreases) up to 
D = 5 but decreases (increases) from D = 6. 

The action for gravity in the cosmological model under consideration 
can be written as 

' f  16tr(~ dt dax dO y r3RD[g(y)]l/2~4+n (32) 

where the bar over Sg and G denotes these quantities in (4 + D)-dimensional 
space-time, ~4+ o is the (4 + D)-dimensional Ricci scalar, and [g(y)]l/2 is the 
square root of  the determinant of the metric tensor on S D. 

Under the conformal transformation 

, - 2  gMN~g:~:=~ (t)guN 

T a ~ e l .  Values of t'c/~tc for Different D, from 
Equation (31) 

2 I 1.18 0.089 
3 23.28 0.043 
4 36.8 0.027 
5 41.56 0.024 
6 35.76 0.028 
7 27.38 0.037 
8 20.695 0.048 
9 16.056 0.062 

10 12.891 0.078 

D 7: = tJtp .~ = M d M p  
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Sg given by (32) can be written as 

S g = -  167r(~1 fdtd3xd,,yf~2+O(_g,+,,)l/2 
x [~* + ~ *  + 2(D + 3)fFrlf~;uNg *uN 

+ D( D + 3)f~-2~,Mf~,Ng *MN] 

where 

and 

o , , , ,  o , ,  

2111 

(33a) 

(33b) 

2A(t) = - ~ * -  2(D + 3)f~;Mjvg MN- D(D + 3)[~,M~.Ng MN 

o :  , [ ( D -  (3D+4) ~ -~ 
t~ k L~R 2 2 

D(D+2)(3D-D2+3)(R-~R)2+3(1-DIR~'~] (34b) 
4 2 ] R  

It is interesting to see that the dimension of the extra manifold has a signifi- 
cant impact in the effective 4,dimensional gravity. Also, time is redefined. 

and 

( _ g . +  ~)i/2 = fl-(4 + O)r3RO[g (y)]~/2 

Now choosing t 2  = R D and performing integration over y with 

fd 
Oy[g(y)]l/2- 2~(~+ i)/2 

I(D + 1)/2 pn 

One gets, from (33), the effective 4-dimensional Einstein-Hilbert action for 
gravity as 

s~4,= I f 161rGN dr d3x r3R-3D/2[.~ * -  2A(t)] (34a) 

where r =  St R3n/2(t ') dt', ~l* is the Ricci scalar in 4-dimensional effective 
gravity, the 4-dimensional metric tensor is 

diag(1, - ? ( r ) R - n ( r ) ,  -r2(r)R-D(r), - r2(QR-n(r))  
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The A(t) given by (34b) is the term induced by the internal manifold 
which contributes to the energy-momentum tensor of the vacuum (in the 4- 
dimensional theory), So A(t) can be identified with cosmological constant 
(Weinberg, 1989), which is time-dependent. 

When ~'< 1 (t<te), using (14) and (22), one gets from (34b) 

A(t) - D(R~176 ~(D- l)koR 2 
2t 2 [ - ~ ) ~  

+[(3D24)a- D(D+2)(3D-D2+3)a24 F 6(1-D/2)a-]~ [tt~ . . . .  ~j~ (35) 

where 

D+2 [ [D3-8D2+21D+18) '/2] 
a 2D(D + 4) ( D  + 3) - I -D~ 

A(t) = 
DRD(?)(D + 3)(D + 2)/2(D + 4) 

2t~, 

xexp[flD(D+4)L D+2 (~-)(o+2)/w+4)] 

x (D- 1)knt~ ~ -(n+3)(n+2)/n(o+4) ( ) 

xexp[2fl(D+ 4) ('i)w+ 2)/w+4) +~ (3D+4)] 
L (D+2) 

f l  - - ( D + 6 ) / ( D + 4 )  x [  (D+3)(D+2) D+4 (t) ] 
L2D(D+4)(/f 

D(D+Z)(3D-D2+3) [(D+ 3)(D+2) fl ]2 
4 L 2D(D+ 4)~" (7)~n+4J 

- - [ -  _ _  . 

D + 4 L2D(D + 4) (t') (~')(o + 6)/(D +4) 

From (35) and (36), one gets that for D=2, A(t)>M2e when t<te and 
A(t) ,-~ M~ when t > re. When D > 3, A is still greater than M~ for t < re, but 
it decreases rapidly for t> te. Thus (36) implies that at late times A(t)~0. 

When/'> 1 (t>tp), using (14) and (24), one gets 
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